数字孪生、赛博物理系统、智能制造、工业互联网这四大术语,是近几年业界当红热词。在国内业界,赛博物理系统兴于2014年,智能制造热于2015年,工业互联网火于2017年,数字孪生则红于2019年。
四大术语是各自独立,还是彼此相关?可能绝大多数人认为彼此相关,但是四个术语之间的异同是什么?相关内涵有多少?运行逻辑之间到底是什么关系?可能确实不太好说清楚。
数字孪生的定义
数字孪生是在软件定义作用下,长期的要素数字化所形成的结果。此处要素泛指物理世界的各种人、机、物、数据、图文、语言、物理信息等各种实体要素。因此数字孪生是一种经过长期发展形成的数字化通用技术。
一是指物理实体与其数字虚体之间的精确映射的孪生关系;二是将具有孪生关系的物理实体、数字虚体分别称作物理孪生体、数字孪生体。
赛博物理系统的基本内涵
CPS于2006年由美国国家自然科学基金会(NSF)的海伦·吉尔首次提出,并伴随着德国人在工业4.0中的推广应用而在全球业界兴起。美国国家标准与技术研究院(NIST)、国家自然科学基金会(NSF)、伯克利大学、德国国家工程院(acatech)、弗劳恩霍夫协会等科研机构进行一系列研究,提出了一些理论框架。
CPS是智能制造和工业互联网的基本运行机理的抽象与提炼。在智能制造和工业互联网中,一定会发现CPS的身影,它变化形式多样,尺度大小不一,可能以单元级、系统级、系统之系统等不同的系统级别来出现。
智能制造的基本内涵
智能制造,源于人工智能的研究。一般认为智能是知识和智力的总和,前者是智能的基础,后者是指获取和运用知识求解的能力。
智能制造应当包含智能制造技术和智能制造系统,智能制造系统不仅能够在实践中不断地充实知识库,而且还具有自学习功能,还有搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。
毫无疑问,智能化是制造自动化的发展方向。在制造过程的各个环节几乎都广泛应用人工智能技术。专家系统技术可以用于工程设计,工艺过程设计,生产调度,故障诊断等。也可以将神经网络和模糊控制技术等先进的计算机智能方法应用于产品配方,生产调度等,实现制造过程智能化。而人工智能技术尤其适合于解决特别复杂和不确定的问题。但同样显然的是,要在企业制造的全过程中全部实现智能化,如果不是完全做不到的事情,至少也是在遥远的将来。
工业互联网的基本含义
工业互联网的本质和核心是通过工业互联网平台把设备、生产线、工厂、供应商、产品和客户紧密地连接融合起来。可以帮助制造业拉长产业链,形成跨设备、跨系统、跨厂区、跨地区的互联互通,从而提高效率,推动整个制造服务体系智能化。还有利于推动制造业融通发展,实现制造业和服务业之间的跨越发展,使工业经济各种要素资源能够高效共享。
优势与作用
对于这四个术语,清晰理解异同,抓住内涵实质,有助于澄清概念,正本清源,可为这些概念的理论研究与工程实践提供了较为明晰的指导,避免了对这四个术语认为的边界模糊、功能泛化,影响这些概念在科研与实践中的应用。也有有助于发挥四个术语的各自特长,引导企业将智能制造、工业互联网这些新工业革命的具体活动内容,在不同的行业领域中做好实践与落地。